If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-36000=0
a = 1; b = 12; c = -36000;
Δ = b2-4ac
Δ = 122-4·1·(-36000)
Δ = 144144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{144144}=\sqrt{144*1001}=\sqrt{144}*\sqrt{1001}=12\sqrt{1001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{1001}}{2*1}=\frac{-12-12\sqrt{1001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{1001}}{2*1}=\frac{-12+12\sqrt{1001}}{2} $
| 10x-11=22+11x | | -4-y=-3y+8 | | y=780(1.07)^9 | | 9b=7b+8 | | x+1.25x=180 | | -113+5x=10x+57 | | y=210(1.06)^14 | | -9q=-10-7q | | (y-4)/6=-9 | | 0.5n+1=-100 | | (x-5)^2=10x | | -8x-127=6x+167 | | X²+8x+56=0 | | 7x+12=52 | | (3b-4)/5=b+4 | | 1=(x+7)/(16x) | | 1.5a-6=-12 | | ⅔(n-6)=5n-43 | | x•x=81 | | -41-6x=17-8x | | 2x+4=4x+20 | | (d-8)²= | | P(n)=10n+5.50 | | y*y=169 | | 2x-231=13x+77 | | 5x+4=-3-4 | | y*y=168 | | (d-8)2= | | -63+13x=121+5x | | -1+0.5f=2 | | 138=n+14 | | (4d+5)(2d+3)= |